lunes, 20 de julio de 2015

IMPORTANCIA DE LA MATEMÁTICA EN LA VIDA DIARIA



IMPORTANCIA DE LA MATEMÁTICA EN LA VIDA DIARIA

No hay dudas que vivimos en un mundo de constantes cambios,  con alta  influencia de las Tecnologías de Información y Comunicación (TIC),  la era de la Informática,  la Robótica y  la Genética,   lo que determina nuevas relaciones de convivencia humana, cultural, política, científica, etc, esa es la realidad que nos tocará vivir.    Hoy el ser humano se ve envuelto en  nuevas condiciones y dimensiones en su formación,  ya que  así  lo exigen las necesidades. Po lo que  debemos destacar la importancia de la matemática en la vida diaria.

La matemática  es necesaria para comprender y analizar la abundante información que nos llega. Genera en el  ser humano la capacidad de pensar en forma abstracta, y crear el hábito de enfrentar problemas, tomar iniciativas y establecer criterios de verdad y otorga confianza frente a muchas situaciones. 

Como valor cultural,  la matemática amplía el universo cultural del individuo ya que desarrolla hábitos de lectura, perfecciona habilidades investigativas, en su rol social encontramos, mejor  dominio     del espacio y del tiempo,  formas y proporciones,  el manejo de la tecnología digital, donde las personas necesitan, en los distintos ámbitos profesionales, un mayor dominio de ideas y destrezas matemáticas.  La toma de decisiones requiere comprender, modificar y producir mensajes de todo tipo.

La Matemática es considerada en forma general el lenguaje de la ciencia y de la técnica. A través de ella se puede explicar y predecir situaciones en el mundo de la naturaleza, en lo económico y social.

La Matemática es el soporte oculto de los avances técnicos que están presentes en nuestro diario vivir.


Las ecuaciones

Ecuación

Una ecuación es una igualdad matemática entre dos expresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, y desconocidos o incógnitas, relacionados mediante operaciones matemáticas. Los valores conocidos pueden ser números, coeficientes o constantes; y también variables cuya magnitud pueda ser establecida a través de las restantes ecuaciones de un sistema, o bien mediante otros procesos. Las incógnitas, representadas generalmente por letras, constituyen los valores que se pretende hallar.
La variable  representa la incógnita, mientras que el coeficiente 3 y los números 1 y 9 son constantes conocidas. La igualdad planteada por una ecuación será cierta o falsa dependiendo de los valores numéricos que tomen las incógnitas; se puede afirmar entonces que una ecuación es una igualdad condicional, en la que sólo ciertos valores de las variables (incógnitas) la hacen cierta.
Resolver una ecuación es encontrar su dominio solución, que es el conjunto de valores de las incógnitas para los cuales la igualdad se cumple. Por lo general, los problemas matemáticos pueden expresarse en forma de una o más ecuaciones; sin embargo no todas las ecuaciones tienen solución, ya que es posible que no exista ningún valor de la incógnita que haga cierta una igualdad dada. En ese caso, el conjunto de soluciones de la ecuación será vacío y se dice que la ecuación no es resoluble. De igual modo, puede tener un único valor, o varios, o incluso infinitos valores, siendo cada uno de ellos una solución particular de la ecuación. Si cualquier valor de la incógnita hace cumplir la igualdad (esto es, no existe ningún valor para el cual no se cumpla) la ecuación es en realidad una identidad.

Uso de ecuaciones

La ciencia utiliza ecuaciones para enunciar de forma precisa leyes; estas ecuaciones expresan relaciones entre variables. Así, en física, la ecuación de la dinámica de Newton relaciona las variables fuerza F, aceleración a y masa m: F = ma. Los valores que son solución de la ecuación anterior cumplen la primera ley de la mecánica de Newton. Por ejemplo, si se considera una masa m = 1 kg y una aceleración a = 1 m/s, la única solución de la ecuación es F = 1 kg·m/s = 1 Newton, que es el único valor para la fuerza permitida por la ley.
Ejemplos:
·         Ecuación de estado
·         Ecuación de movimiento
·         Ecuación constitutiva
El campo de aplicación de las ecuaciones es inmenso, y por ello hay una gran cantidad de investigadores dedicados a su estudio.

Tipos de ecuaciones

Las ecuaciones pueden clasificarse según el tipo de operaciones necesarias para definir las y según el conjunto de números sobre el que se busca la solución. Entre los tipos más frecuentes están:
·         Ecuaciones algebraicas
·         De primer grado o lineales
·         De segundo grado o cuadráticas
·         Diofánticas o diofantinas
·         Racionales, aquellas en las que uno o ambos miembros se expresan como un cociente de polinomios
·         Ecuaciones trascendentes, cuando involucran funciones no polinómicas, como las funciones trigonométricas, exponenciales, logarítmicas, etc.
·         Ecuaciones diferenciales
·         Ordinarias
·         En derivadas parciales
·         Ecuaciones integrales
·         Ecuaciones funcionales

Definición general

Dada una aplicación f : A → B y un elemento b del conjunto B, resolver una ecuación consiste en encontrar todos los elementos x  A que verifican la expresión: f(x) = b. Al elemento x se le llama incógnita. Una solución de la ecuación es cualquier elemento a  A que verifique f(a) = b.
El estudio de las ecuaciones depende de las características de los conjuntos y la aplicación; por ejemplo, en el caso de las ecuaciones diferenciales, los elementos del conjunto A son funciones y la aplicación f debe incluir alguna de las derivadas del argumento. En las ecuaciones matriciales, la incógnita es una matriz.
La definición que se ha dado incluye las ecuaciones de la forma g(x) = h(x). «+» denota la suma de funciones, entonces(B, +) es un grupo. Basta definir la aplicación f(x) = g(x) – h(x), con –h el inverso de h con respecto a la suma, para transformar la ecuación en f(x) = 0.

Conjunto de soluciones

Dada la ecuación f(x) = b, el conjunto de soluciones de la ecuación viene dado por S = f–1(b), donde f–1 es la imagen inversa de f. Si S es el conjunto vacío, la ecuación no es soluble; si tiene sólo un elemento, la ecuación tendrá solución única; y si S posee más de un elemento, todos ellos serán soluciones de la ecuación.
En la teoría de ecuaciones diferenciales, no se trata sólo de averiguar la expresión explícita de las soluciones, sino determinar si una ecuación determinada tiene solución y esta es única. Otro caso en los que se investiga la existencia y unicidad de soluciones es en los sistemas de ecuaciones lineales.

Casos particulares

Una ecuación diofántica es aquella cuya solución sólo puede ser un número entero, es decir, en este caso A  . Una ecuación funcional es aquella en la que algunas de las constantes y variables que intervienen no son realmente números sino funciones; y si en la ecuación aparece algún operador diferencial se llama ecuación diferencial. Cuando A es un cuerpo y f un polinomio, se tiene ecuación algebraica polinómica.
En un sistema de ecuaciones lineales, el conjunto A es un conjunto de vectores reales y la función es un operador lineal.

Existencia de soluciones

En muchos casos, por ejemplo en las ecuaciones diferenciales, una de las cuestiones más importantes es determinar si existe alguna solución, es decir demostrar que el conjunto de soluciones no es el conjunto vacío. Uno de los métodos más corrientes para lograrlo consiste en aprovechar que el conjunto A tiene alguna topología. No es el único: en los sistemas de ecuaciones reales, se recurre a técnicas algebraicas para averiguar si el sistema tiene solución. No obstante, el álgebra parece que carece de recursos siquiera para asegurar la existencia de soluciones en las ecuaciones algebraicas: para asegurar que toda ecuación algebraica con coeficientes complejos tiene una solución hay que recurrir al análisis complejo y, por lo tanto, a la topología.

Ecuación algebraica

Una ecuación algebraica, polinómica o polinomial es una igualdad entre dos polinomios. Por ejemplo:
x3y + 4x  y = 5 – 2xy

Definición

Se llama ecuación algebraica con una incógnita la ecuación que se reduce a lo que sigue
α0xn + α1xn – 1 + α2xn – 2 + ... + αn – 1x + αn = 0.
donde n es un número entero positivo; α0, α1, α2, ..., αn – 1, αn se denominan coeficientes o parámetros de la ecuación y se toman dados; x se nombra incógnita y es buscada. El número n positivo se llama grado de la ecuación1 Para definir un número algebraico se consideran como coeficientes, números racionales.

Propiedades de las ecuaciones

El axioma (Elemento básico de un sistema de lógica formal y junto con las reglas de inferencia definen un sistema deductivo) fundamental de las ecuaciones es que una ecuación se transforma en otra equivalente cuando se ejecutan operaciones elementales iguales en ambos miembros. Es decir:
•Si a los dos miembros de una ecuación se les suma una misma cantidad positiva o negativa, la igualdad subsiste.
•Si a los dos miembros de una ecuación se les resta una misma cantidad, positiva o negativa, la igualdad subsiste.
•Si a los dos miembros de una ecuación se multiplican por una misma cantidad, positiva o negativa, la igualdad subsiste.
•Si a los dos miembros de una ecuación se dividen por una misma cantidad, positiva o negativa, la igualdad subsiste.
Al exponer las propiedades de la igualdad en su forma general, para cualesquiera de los números reales a, b y c.
Si a = b entonces a + c = b + c
Si a = b entonces a  c = b  c
Si a = b entonces ac = bc
Si a = b entonces a/c = b/c siempre que c ≠ 0
Para todos los números reales a, b y c:

Propiedad reflexiva:
Si a = a. Ejemplo: 14 = 14x + 8 = x + 8

Propiedad simétrica:
Si a = b, entonces b = a. Ejemplo: Si x = 5, entonces 5 = x. Si y = 2 + x, entonces 2 + x = y.

Propiedad transitiva:
Si a = b y b = c, entonces a = c. Ejemplo: Si x = a y a = 8b, entonces x = 8b. Si xy = 8z, y 8z = 32, entonces xy = 32.

La aritmetica

Aritmética

La aritmética es la rama de la matemática cuyo objeto de estudio son los números y las operaciones elementales hechas con ellos: suma, resta, multiplicación y división.
Al igual que en otras áreas de la matemática, como el álgebra o la geometría, el sentido de «la aritmética» ha ido evolucionando con el progresivo desarrollo de las ciencias. Originalmente, la aritmética se desarrolla de manera formal en la Antigua Grecia, con el refinamiento del rigor matemático y las demostraciones, y su extensión a las distintas disciplinas de las «ciencias naturales». En la actualidad, puede referirse a la aritmética elemental, enfocada a la enseñanza de la matemática básica; también al conjunto que reúne el cálculo aritmético y las operaciones matemáticas, específicamente, las cuatro operaciones básicas aplicadas ya sea a números (naturales, fracciones, etc.) como a entidades matemáticas más abstractas (matrices, operadores, etc); también a la así llamada alta aritmética, mejor conocida como teoría de números.

Operaciones aritméticas


Las cuatro operaciones básicas (o elementales) de la aritmética son:
·         Suma
·         Resta
·         Multiplicación
·         División
En el sentido de la definición propuesta, el sustantivo «aritmética», en los primeros grados de enseñanza escolar, suele designarse simplemente como «matemática», la distinción comienza a precisarse con la introducción del álgebra y la consiguiente implementación de "letras" para representar "variables" e "incógnitas", así como las definiciones de las propiedades algebraicas tales como conmutatividad, asociatividad o distributividad, que son propias del álgebra elemental.
De manera más general, el cómputo numérico incluye, además de las operaciones básicas: el cálculo de congruencias, lafactorización, el cálculo de potencias y la extracción de raíces. En este sentido, el término aritmética se aplica para designar operaciones realizadas sobre entidades que no son números enteros solamente, sino que pueden ser decimales, racionales, etc., o incluso objetos matemáticos con características completamente diferentes. El término «aritmética» es utilizado también como adjetivo, como por ejemplo en una progresión aritmética.

Instrumentos de cálculo


Los utensilios para facilitar las cuentas numéricas y el conteo han sido utilizados a través de miles de años, por ejemplo contar con los dedos estableciendo una correspondencia uno-a-uno con los dedos de la mano. El primer objeto para contar fue probablemente un «palo de conteo». Registros posteriores, a lo largo del Creciente Fértil incluyen cálculos (esferas de barro, conos, etc.) que representan cuentas de objetos, posiblemente granos. La numeración con varillas es otro ejemplo.

Historia

Origen

Los orígenes de la aritmética se pueden rastrear hasta los comienzos de la matemática misma, y de la ciencia en general. Los registros más antiguos datan de la Edad de Piedra: huesos, palos, piedras talladas y escarbadas con muescas, presumiblemente con fines de conteo, de representación numérica y calendarios.

Edad antigua

Hay evidencias de que los babilonios tenían sólidos conocimientos de casi todos los aspectos de la aritmética elemental hacia 1800 a. C., gracias a transcripciones de caracteres cuneiformes sobre tablillas de barro cocido, referidas a problemas de geometría y astronomía. Solo se puede especular sobre los métodos utilizados para generar los resultados aritméticos - tal y como se muestra, por ejemplo, en la tablilla de arcilla Plimpton 322, que parece ser una lista de ternas pitagóricas, pero sin mostrar cómo se generó la lista.
Los antiguos textos Shulba-sutras (datados ca. 800 a.C y 200 a.C) recopilan los conocimientos matemáticos de la India durante el período védico; constan de datos geométricos relacionados con la construcción de altares de fuego, e incluyen el problema de la cuadratura del círculo

Otras civilizaciones mesopotámicas, como sirios y fenicios, alcanzaron grados de desarrollo matemático similar que utilizaron tanto para el comercio como para la resolución de ecuaciones algebraicas.
El sistema de numeración egipcio, basado en fracciones unitarias, permitía efectuar cuentas aritméticas avanzadas, como se muestra en papiros conservados como el Papiro de Moscú o el Papiro de Ahmes (que data de ca. 1650 a. C., aunque es una copia de un antiguo texto de ca. 1850 a. C.) que muestra sumas, restas, multiplicaciones y divisiones, utilizando unsistema de fracciones, así como los problemas de determinar el volumen de una esfera, o el volumen de una pírámide truncada. El papiro de Ahmes es el primer texto egipcio que menciona los 365 días del calendario egipcio, es el primer calendario solar conocido.

Aritmética formal en la Antigua Grecia

La aritmética en la Grecia Antigua era considerada como el estudio de las propiedades de los números, y no incluía cálculos prácticos, los métodos operatorios eran considerados una ciencia aparte. Esta particularidad fue heredada a los europeos durante la Edad Media, y no fue hasta el Renacimiento que la teoría de números y los métodos de cálculo comenzaron a considerarse «aritméticos».
La matemática griega hace una aguda diferencia entre el concepto de número y el de magnitud o conmensurabilidad. Para los antiguos griegos, número significaba lo que hoy se conoce por número natural, además de diferenciar entre «número» y «magnitud geométrica». Los libros 7–9 de Los elementos de Euclides tratan de la aritmética exclusivamente en este sentido.
Nicómaco de Gerasa (ca. 60 - 120 d. C.), en su Introducción a la Aritmética, resume la filosofía de Pitágoras y de Platónenfocada a los números y sus relaciones fundamentales. Nicómaco hace por primera vez la diferencia explícita entreMúsica, Astronomía, Geometría y Aritmética, y le da a esta última un sentido más «moderno», es decir, referido a losnúmeros enteros y sus propiedades fundamentales. El quadrivium (lat. "cuatro caminos"), agrupaba estas cuatro disciplinas científicas relacionadas con la matemática proveniente de la escuela pitagórica.
Diofanto de Alejandría (siglo III d.C), es el autor de Arithmetica, una serie de libros sobre ecuaciones algebraicas en donde por primera vez se reconoce a las fracciones como números, y se utilizan símbolos y variables como parte de la notación matemática; redescubierto por Pierre de Fermat en el siglo XVII, las hoy llamadas ecuaciones diofánticas condujeron a un gran avance en la teoría de números.

Edad Media y Renacimiento europeo

El mayor progreso matemático de los griegos se dio entre los años 300 a.C y el 200 d.C. Después de esto los avances continuaron en regiones islámicas. La matemática floreció en particular en Irán, Siria e India. Si bien los descubrimientos no fueron tan sustanciales como los llevados a cabo por la ciencia griega, sí contribuyeron en gran medida a preservar sus obras originales. A partir del siglo XI, Adelardo de Bath y más adelante Fibonacci, introducen nuevamente en Europa esta matemática islámica y sus traducciones del griego.
De las siete artes liberales en que se organizaban los estudios formales en la Antigüedad y la Edad Media, la aritmética era parte de las enseñanzas escolásticas y universitarias. En 1202, Fibonacci, en su tratado Liber Abaci, introduce el sistema de numeración decimal con números arábigos. Las operaciones aritméticas, aún las más básicas, realizadas hasta entonces con numerales romanos resultaban muy complicadas; la importancia práctica en contabilidad hizo que las nuevas técnicas aritméticas se popularizaran enseguida en Europa. Fibonacci llegó a escribir que «comparado con este nuevo método, todos los demás habían sido erróneos».

Civilizaciones precolombinas


Al igual que otras civilizaciones mesoamericanas, los mayas utilizaban un sistema de numeración de base vigesimal (base aritmética 20) para medir el tiempo y participar del comercio a larga distancia. Los mayas preclásicos desarrollaron independientemente el concepto del cero alrededor del año 36 a. C. Aunque poseían sistema de numeración, la ciencia maya y azteca estaba más enfocada en predecir el paso del tiempo, elaborar calendarios y pronosticar eventos astronómicos. Las culturas andinas, que no poseían sistema de escritura, sí parecen haber desarrollado más el cálculo aritmético. Algunas inscripciones fijan con gran precisión el año solar real en 365 días. Fueron las primeras civilizaciones en inventar el cero, aunque con algunas peculiaridades que le privaron de posibilidad operatoria.
Los incas se destacaron principalmente por su capacidad de cálculo para fines económicos y comerciales. Los quipus y yupanas fueron señal de la importancia que tuvo la administraciónincaica. Esto dotó a los incas de una aritmética sencilla pero efectiva para fines contables; basada en un sistema decimal, conocieron el cero y dominaron la suma, la resta, la multiplicación y la división.

Aritmética en Chin

La matemática china temprana es tan diferente a la de otras partes del mundo, que es razonable suponer que se desarrolló independientemente. El texto de matemáticas más antiguo que se conserva es el Chou Pei Suan Ching (literalmente: La Aritmética Clásica del Gnomon y los Senderos Circulares del Cielo), datado del 300 a.C.
De particular notoriedad es el uso de un sistema decimal posicional, la así llamada numeración con varillas, utilizada muchos siglos antes del sistema indoarábigo de numeración. El sistema de numeración con varillas permitía representar cantidades arbitrariamente grandes, y facilitaba el cálculo matemático con suanpan (o ábaco chino). La fecha de invención del "suan pan" es incierta, pero los registros escrito más antiguos que lo mencionan datan del año 190 a.C., en las «Notas Suplementarias en el arte de las Figuras», de Xu Yue.
Los nueve capítulos sobre el arte matemático, contiene problemas de agricultura, comercio, geometría e ingeniería, así como trabajos con triángulos rectángulos y aproximaciones al número π. El matemático chino Zu Chongzhi calculó el valor de π hasta siete decimales.

Aritmética en la India: el cero y la notación posicional

La matemática hindú alcanzó su madurez durante los siglos I al VIII, con el invento trascendental de la notación posicional empleando la cifra cero como valor nulo. Utilizaron, como en Occidente, un sistema de numeración de base 10 (con diez dígitos). Egipcios, griegos y romanos, aunque utilizaban un sistema decimal, este no era posicional, ni poseía el cero, el cual fue transmitido a occidente mucho más tarde por los árabes, que le llamaban hesab, a través de la España e Italia medievales.
El sistema de numeración decimal aparece ya en el Süryasiddhanta, pequeño tratado que data probablemente del siglo VI. Los trabajos matemáticos de los hindúes se incorporaron en general a las obras astronómicas. Este es el caso deAryabhata, nacido hacia 476, y de Brahmagupta, nacido hacia 598. Hacia 1150, Bhaskara escribió un tratado de aritmética en el que exponía el procedimiento del cálculo de raíces cuadradas. Se trata de una teoría de las ecuaciones de primer y segundo grado, no en forma geométrica, como lo hacían los griegos, sino en una forma que se puede llamar algebraica.
En el siglo VII, el obispo sirio Severo Sebhokt menciona este método con admiración, indicando no obstante que el método indio iba más allá de esa descripción. Las múltiples ventajas prácticas y teóricas del sistema de «notación posicional con cero» dieron el impulso definitivo a todo el desarrollo ulterior de la matemática. Los modernos algoritmos de cálculo fueron posibles gracias a la introducción de los números árabes y la notación decimal posicional.

Aritmética árabe

La matemática hindú, con el temprano desarrollo de la notación posicional y uso del cero, revistieron gran importancia en el progreso matemático posterior. Esta herencia fue recogida por los árabes, netamente con los trabajos de al-Jwarizmi y las primeras traducciones de textos griegos al árabe, incluyendo los Elementos de Euclides realizada por al-Hajjaj. En la Casa de la sabiduría (Bayt al-Hikma, una institución de investigación y traducción establecida en Bagdad), los científicos y matemáticos tradujeron las obras de Euclides, Diofanto, Menelao, Arquímedes, Ptolomeo, Apolonio entre otros clásicos de la ciencia griega. Uno de los avances más significativos se da con los trabajos de Abu Yafar Mohamed ibn Musa al-Jwarizmi: el álgebra, que representaba un apartamiento revolucionario del concepto geometricista de los griegos, permitiendo un tratamiento distinto de los "objetos" tales como los números racionales, los irracionales o las magnitudes geométricas, y una aplicación sistemática de la aritmética al álgebra. Abu Bekr ibn Muhammad ibn al-Husayn al-Karaji, nacido en 953, es probablemente el primero en liberar completamente al álgebra de las operaciones geométricas y remplazarlas por el tipo de operaciones aritméticas que constituyen el corazón del álgebra actual. al-Samawal (nacido en 1130) fue el primero en dar al nuevo tópico del álgebra una descripción precisa, cuando escribió que ella se ocupaba ...de operar sobre las incógnitas usando todas las herramientas aritméticas, de la misma forma que el aritmético opera sobre lo conocido. Thabit ibn Qurra (nacido en 836), hizo múltiples contribuciones en los más diversos campos de la matemática, en especial a la teoría de números.
Tres distintos tipos de sistemas aritméticos se empleaban simultáneamente alrededor del siglo X: la aritmética por conteo con los dedos, con los numerales enteramente escritos en palabras, era el método empleado por la comunidad mercantil; el sexagesimal, con los numerales denotados por letras del alfabeto árabe, provenía de la matemática babilónica, y los matemáticos del islam lo usaron principalmente para el trabajo astronómico; el tercer sistema fue la aritmética de los numerales indios y las fracciones con valor posicional decimal.

Alta aritmética

El término aritmética también hace referencia a la teoría de números, la cual desarrolla y profundiza las propiedades de los números (enteros) relacionadas con su primalidad, divisibilidad y las soluciones de ecuaciones en los enteros; en particular, el «teorema fundamental de la aritmética» y las «funciones aritméticas» se desarrollan dentro de este marco y este es el uso reflejado en A Course in Arithmetic de Jean-Pierre Serre, o el que le da Harold Davenport en frases como: "aritmética de primer orden" o "alta aritmética".
·         La aritmética modular trata de las congruencias de números enteros; su estudio se inscribe dentro de la teoría de números.
·         La aritmética binaria y el álgebra de Boole, muy utilizadas en informática, es el cálculo aritmético efectuado en un sistema de numeración binario, y el álgebra resultante. Documentado por Leibniz, en el siglo XVII, en su artículoExplication de l'Arithmétique Binaire.
·         La aritmética ordinal, en teoría de conjuntos, describe el cálculo aritmético con las operaciones —suma, multiplicación y potenciación— aplicadas a los números ordinales.
·         La aritmética de Peano es el conjunto de axiomas de construcción de los números naturales.
·         Teoremas de incompletitud de Gödel, enunciados por Gödel en 1930, demuestra que ninguna teoría matemática formal capaz de describir los números naturales y la aritmética con suficiente expresividad, es a la vez consistente y completa.

El Teorema Fundamental de la Aritmética

También conocido como teorema de factorización única, afirma que todo entero positivo se puede representar de forma única como producto de factores primos. Este resultado fue obtenido por Euclides, y presentado originalmente como un corolario al llamado Primer Teorema de Euclides. La demostración formal no se dio hasta la publicación de las Disquisitiones Arithmeticae por Carl Friedrich Gauss en 1801. La generalización y profundización de este resultado y otros similares, son los que impulsan el desarrollo de la teoría de números, la geometría algebraica o la teoría de grupos.

La axiomatización de la aritmética

La teoría de conjuntos y en particular diversas paradojas relacionadas con los conjuntos infinitos, así como los problemas derivados de la noción de cantidad infinitesimal, entre otros, llevaron a la llamada «crisis de los fundamentos» de la matemática, a principios del siglo XX. En ese contexto, David Hilbert y otros matemáticos colaboradores propusieron el llamado programa de Hilbert como respuesta al problema de los fundamentos. Dicho programa pretendía librar de paradojas el trabajo matemático mediante la formalización y la axiomatización explícita de diversas ramas de la matemática. En el caso de la aritmética, ya Giuseppe Peano había propuesto los llamados «axiomas de Peano» para la aritmética. Estos axiomas, en la forma propuesta por Peano, no podían ser formalizados en un sistema lógico de primer orden, aunque al principio no se pensó que eso constituyera un problema, por lo que por algún tiempo se trabajó en la fundamentación de la aritmética y la teoría de conjuntos usando lenguajes formales de primer orden; sin embargo, el programa de Hilbert sufriría un revés importante cuando Kurt Gödel probó que la formalización de la aritmética mediante un sistema de primer orden en el más puro estilo del programa de Hilbert era problemático.

El teorema de incompletitud de Gödel

En 1931, Kurt Gödel demostró sus dos famosos teoremas de incompletitud. El primer teorema se refiere a una axiomatización de la aritmética como teoría de primer orden, donde el conjunto de axiomas fuera recursivo (es decir, existiera un algoritmo que permitiera decidir en un número finito de pasos si una proposición dada era o no un axioma, ya que la formalización requiere un número infinito de axiomas, todos ellos instancias de un número finito de esquemas de axioma). Este primer teorema demostraba que aceptando que dicha teoría es consistente entonces necesariamente debe ser incompleta. Es decir, suponiendo que dicha teoría no diera lugar nunca a contradicciones (consistencia) entonces siempre habría una proposición tal que ni ella ni su contrario son demostrables. Asumiendo esta interpretación, lo anterior se puede entender como que «existen afirmaciones ciertas no deducibles dentro de la teoría». Gödel demostró este teorema construyendo explícitamente una fórmula tal que ni esta ni su negación fueran demostrables. El segundo teorema de Gödel es aún más ambicioso, Gödel probó que un conjunto de fórmulas dentro de un lenguaje formal que formalizara la aritmética podía "gödelizarse", es decir, representarse por un subconjunto de números enteros, tal que a cada proposición del conjunto correspondía un único número y a cada número del conjunto correspondía una proposición o fórmula. Este teorema asevera que la consistencia de la propia aritmética es indemostrable dentro de la aritmética ya que el conjunto denúmeros de Gödel asociado al conjunto de teoremas demostrables no era representable dentro de la teoría como subconjunto recursivo.

Aritmética de segundo orden

Artículo principal: Aritmética de segundo orden
Los teoremas de incompletitud tuvieron un efecto demoledor sobre el programa de Hilbert, por lo que se buscaron generalizaciones más sofisticadas para formalizar la aritmética. Si bien puede construirse un lenguaje de primer orden para la aritmética que sea consistente y completo, pero a condición de introducir un número infinito de axiomas adicionales y sin que el conjunto añadido sea recursivo, lo cual carece de interés práctico ya que sería imposible describir explícitamente ese conjunto de axiomas mediante algún procedimiento algorítmico razonable. Por esa razón, se comenzó a trabajar sobre la construcción de sistemas para formalizar la aritmética mediante lenguajes formales de segundo orden. Puede probarse que la llamada aritmética de segundo orden completa, admite un único modelo que en esencia puede identificarse con los números naturales formalizados menos rigurosamente por los axiomas de Peano. Sin embargo, esa trivialidad del conjunto de modelos de la teoría la hace poco interesante en muchos aspectos, por esta razón se han buscado modelos de aritmética de segunda orden lógicamente más débiles, con el fin de averiguar qué partes de la matemática son formalizables utilizando un lenguaje formal más restrictivo. En la actualidad se han construido un cierto número de lenguajes de segundo orden para la aritmética, y el estudio de los mismos es importante en la llamada matemática inversa que busca averiguar cuál es sistema lógicamente más restrictivo que permite formalizar ciertas áreas de la matemática.